Minimax Bayes Estimation in Nonparametric Regression
Heckman, Nancy E. ; Woodroofe, Michael
Ann. Statist., Tome 19 (1991) no. 1, p. 2003-2014 / Harvested from Project Euclid
One observes $n$ data points, $(\mathbf{t}_i, Y_i),$ with the mean of $Y_i$, conditional on the regression function $f,$ equal to $f(\mathbf{t}_i).$ The prior distribution of the vector $\mathbf{f} = (f(\mathbf{t}_1), \ldots, f(\mathbf{t}_n))^t$ is unknown, but lies in a known class $\Omega.$ An estimator, $\hat{\mathbf{f}},$ of $\mathbf{f}$ is found which minimizes the maximum $E\|\hat{\mathbf{f}} - \mathbf{f}\|^2.$ The maximum is taken over all priors in $\Omega$ and the minimum is taken over linear estimators of $\mathbf{f}.$ Asymptotic properties of the estimator are studied in the case that $\mathbf{t}_i$ is one-dimensional and $\Omega$ is the set of priors for which $f$ is smooth.
Publié le : 1991-12-14
Classification:  Minimax estimates,  Bayes estimates,  nonparametric regression,  smoothing,  65D10
@article{1176348383,
     author = {Heckman, Nancy E. and Woodroofe, Michael},
     title = {Minimax Bayes Estimation in Nonparametric Regression},
     journal = {Ann. Statist.},
     volume = {19},
     number = {1},
     year = {1991},
     pages = { 2003-2014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176348383}
}
Heckman, Nancy E.; Woodroofe, Michael. Minimax Bayes Estimation in Nonparametric Regression. Ann. Statist., Tome 19 (1991) no. 1, pp.  2003-2014. http://gdmltest.u-ga.fr/item/1176348383/