Bootstrapping Unstable First-Order Autoregressive Processes
Basawa, I. V. ; Mallik, A. K. ; McCormick, W. P. ; Reeves, J. H. ; Taylor, R. L.
Ann. Statist., Tome 19 (1991) no. 1, p. 1098-1101 / Harvested from Project Euclid
Consider a first-order autoregressive process $X_t = \beta X_{t - 1} + \varepsilon_t$, where $\{\varepsilon_t\}$ are independent and identically distributed random errors with mean 0 and variance 1. It is shown that when $\beta = 1$ the standard bootstrap least squares estimate of $\beta$ is asymptotically invalid, even if the error distribution is assumed to be normal. The conditional limit distribution of the bootstrap estimate at $\beta = 1$ is shown to converge to a random distribution.
Publié le : 1991-06-14
Classification:  Autoregressive processes,  bootstrapping least squares estimator,  bootstrap invalidity,  unstable process,  62M07,  62M09,  62M10,  62E20
@article{1176348142,
     author = {Basawa, I. V. and Mallik, A. K. and McCormick, W. P. and Reeves, J. H. and Taylor, R. L.},
     title = {Bootstrapping Unstable First-Order Autoregressive Processes},
     journal = {Ann. Statist.},
     volume = {19},
     number = {1},
     year = {1991},
     pages = { 1098-1101},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176348142}
}
Basawa, I. V.; Mallik, A. K.; McCormick, W. P.; Reeves, J. H.; Taylor, R. L. Bootstrapping Unstable First-Order Autoregressive Processes. Ann. Statist., Tome 19 (1991) no. 1, pp.  1098-1101. http://gdmltest.u-ga.fr/item/1176348142/