Minimaxity of the Empirical Distribution Function in Invariant Estimation
Yu, Qiqing ; Chow, Mo-suk
Ann. Statist., Tome 19 (1991) no. 1, p. 935-951 / Harvested from Project Euclid
Consider the problem of continuous invariant estimation of a distribution function with the weighted Cramer-von Mises loss. The minimaxity of the empirical distribution function, which is also the best invariant estimator, is proved for any sample size. This solves a long-standing conjecture.
Publié le : 1991-06-14
Classification:  Minimaxity within a class,  Cramer-von Mises loss,  invariant estimator,  nonparametric estimator,  Egoroff's theorem,  Baire category theorem,  product measure,  62C15,  62D05
@article{1176348129,
     author = {Yu, Qiqing and Chow, Mo-suk},
     title = {Minimaxity of the Empirical Distribution Function in Invariant Estimation},
     journal = {Ann. Statist.},
     volume = {19},
     number = {1},
     year = {1991},
     pages = { 935-951},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176348129}
}
Yu, Qiqing; Chow, Mo-suk. Minimaxity of the Empirical Distribution Function in Invariant Estimation. Ann. Statist., Tome 19 (1991) no. 1, pp.  935-951. http://gdmltest.u-ga.fr/item/1176348129/