On Differentiable Functionals
Vaart, Aad Van Der
Ann. Statist., Tome 19 (1991) no. 1, p. 178-204 / Harvested from Project Euclid
Given a sample of size $n$ from a distribution $P_\lambda$, one wants to estimate a functional $\psi(\lambda)$ of the (typically infinite-dimensional) parameter $\lambda$. Lower bounds on the performance of estimators can be based on the concept of a differentiable functional $P_\lambda \rightarrow \psi(\lambda)$. In this paper we relate a suitable definition of differentiable functional to differentiability of $\alpha \rightarrow dP^{1/2}_\lambda$ and $\lambda \rightarrow \psi(\lambda)$. Moreover, we show that regular estimability of a functional implies its differentiability.
Publié le : 1991-03-14
Classification:  Convolution theorem,  asymptotic efficiency,  semi-parametric model,  information operator,  efficient information,  mixture model,  censoring,  truncation,  62G20,  62G05
@article{1176347976,
     author = {Vaart, Aad Van Der},
     title = {On Differentiable Functionals},
     journal = {Ann. Statist.},
     volume = {19},
     number = {1},
     year = {1991},
     pages = { 178-204},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347976}
}
Vaart, Aad Van Der. On Differentiable Functionals. Ann. Statist., Tome 19 (1991) no. 1, pp.  178-204. http://gdmltest.u-ga.fr/item/1176347976/