Partial Orders on Permutations and Dependence Orderings on Bivariate Empirical Distributions
Block, H. W. ; Chhetry, D. ; Fang, Z. ; Sampson, A. R.
Ann. Statist., Tome 18 (1990) no. 1, p. 1840-1850 / Harvested from Project Euclid
Three well-known partial orderings and one new one, designated by $\geq_{b_t}, t = 1, 2, 3, 4$, are defined on permutations of $\{1, 2, \cdots, n\}$ through a unified approach. Various formulations of these partial orderings are also considered. With the aid of these formulations we show that the four orderings on permutations are equivalent to positive dependence orderings defined over empirical distributions based on rank data. In particular, we show that the orderings $b_1, b_2, b_3$ and $b_4$ are equivalent, respectively, to more concordant, more row regression dependent, more column regression dependent and more associated.
Publié le : 1990-12-14
Classification:  Permutation,  partial ordering,  more concordant,  more column or row regression dependent,  more associated,  $L$-superadditive,  ranks,  empirical distribution function,  positive dependence,  more concordance,  more column or row regression dependent,  more associated,  $L$-superadditive,  ranks,  empirical distribution function,  positive dependence,  concordance,  inversion,  62H05,  20B99
@article{1176347882,
     author = {Block, H. W. and Chhetry, D. and Fang, Z. and Sampson, A. R.},
     title = {Partial Orders on Permutations and Dependence Orderings on Bivariate Empirical Distributions},
     journal = {Ann. Statist.},
     volume = {18},
     number = {1},
     year = {1990},
     pages = { 1840-1850},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347882}
}
Block, H. W.; Chhetry, D.; Fang, Z.; Sampson, A. R. Partial Orders on Permutations and Dependence Orderings on Bivariate Empirical Distributions. Ann. Statist., Tome 18 (1990) no. 1, pp.  1840-1850. http://gdmltest.u-ga.fr/item/1176347882/