Let $\alpha_n$ be the classical empirical process and $T: D\lbrack 0, 1\rbrack \rightarrow R$. Assume $T$ satisfies the Lipschitz condition. Using the Komlos-Major-Tusnady inequality, bounds for $P(T(\alpha_n) \geq x_n \sqrt n)$ are obtained for every $n$ and $x_n > 0$. Hence expansions for large deviations, as well as some moderate and Cramer-type large-deviations results for $T(\alpha_n)$, are derived.
@article{1176347764,
author = {Inglot, Tadeusz and Ledwina, Teresa},
title = {On Probabilities of Excessive Deviations for Kolmogorov-Smirnov, Cramer-von Mises and Chi-Square Statistics},
journal = {Ann. Statist.},
volume = {18},
number = {1},
year = {1990},
pages = { 1491-1495},
language = {en},
url = {http://dml.mathdoc.fr/item/1176347764}
}
Inglot, Tadeusz; Ledwina, Teresa. On Probabilities of Excessive Deviations for Kolmogorov-Smirnov, Cramer-von Mises and Chi-Square Statistics. Ann. Statist., Tome 18 (1990) no. 1, pp. 1491-1495. http://gdmltest.u-ga.fr/item/1176347764/