Nonparametric Estimation of a Probability Density on a Riemannian Manifold Using Fourier Expansions
Hendriks, Harrie
Ann. Statist., Tome 18 (1990) no. 1, p. 832-849 / Harvested from Project Euclid
Supposing a given collection $y_1, \cdots, y_N$ of i.i.d. random points on a Riemannian manifold, we discuss how to estimate the underlying distribution from a differential geometric viewpoint. The main hypothesis is that the manifold is closed and that the distribution is (sufficiently) smooth. Under such a hypothesis a convergence arbitrarily close to the $N^{-1/2}$ rate is possible, both in the $L_2$ and the $L_\infty$ senses.
Publié le : 1990-06-14
Classification:  Nonparametric density estimation,  $L_2$ convergence,  $L_\infty$ convergence,  closed manifolds,  homogeneous manifolds,  Laplace-Beltrami operator,  Fourier theory,  convergence of generalized zeta functions,  62G05,  35P20,  58G11,  58G25
@article{1176347628,
     author = {Hendriks, Harrie},
     title = {Nonparametric Estimation of a Probability Density on a Riemannian Manifold Using Fourier Expansions},
     journal = {Ann. Statist.},
     volume = {18},
     number = {1},
     year = {1990},
     pages = { 832-849},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347628}
}
Hendriks, Harrie. Nonparametric Estimation of a Probability Density on a Riemannian Manifold Using Fourier Expansions. Ann. Statist., Tome 18 (1990) no. 1, pp.  832-849. http://gdmltest.u-ga.fr/item/1176347628/