Prior Envelopes Based on Belief Functions
Wasserman, Larry Alan
Ann. Statist., Tome 18 (1990) no. 1, p. 454-464 / Harvested from Project Euclid
We show that the mathematical structure of belief functions makes them suitable for generating classes of prior distributions to be used in robust Bayesian inference. In particular, the upper and lower bounds of the posterior probability content of a measurable subset of the parameter space may be calculated directly in terms of upper and lower expectations (Theorem 4.1). We also extend an integral representation given by Dempster to infinite sets (Theorem 2.1).
Publié le : 1990-03-14
Classification:  Belief functions,  Choquet capacities,  Markov kernel,  robust Bayesian inference,  62A15,  62F15
@article{1176347511,
     author = {Wasserman, Larry Alan},
     title = {Prior Envelopes Based on Belief Functions},
     journal = {Ann. Statist.},
     volume = {18},
     number = {1},
     year = {1990},
     pages = { 454-464},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347511}
}
Wasserman, Larry Alan. Prior Envelopes Based on Belief Functions. Ann. Statist., Tome 18 (1990) no. 1, pp.  454-464. http://gdmltest.u-ga.fr/item/1176347511/