$A$-Optimal Weighing Designs when $N \equiv 3 (\operatorname{mod} 4)$
Sathe, Y. S. ; Shenoy, R. G.
Ann. Statist., Tome 17 (1989) no. 1, p. 1906-1915 / Harvested from Project Euclid
In this paper we consider the problem of $A$-optimal weighing designs for $n$ objects in $N$ weighings on a chemical balance when $N \equiv 3(\operatorname{mod} 4)$. Let $D(N, n)$ denote the class of $N \times n$ design matrices $X_d$ whose elements are $+1$ and $-1$. It is shown that if $X_d$ is such that $X'_dX_d$ is a block matrix having a specified block structure, then $X_d$ is $A$-optimal in $D(N, n)$. It is found that in some cases the $A$-optimal design in $D(N, n)$ is not unique. A larger class of chemical balance weighing designs is $D^0(N, n)$, where $X_d$ may have some elements equal to zero. It is observed that the designs which are $A$-optimal in $D(N, n)$ are not necessarily $A$-optimal in $D^0(N, n)$.
Publié le : 1989-12-14
Classification:  Weighing designs,  $A$-optimality,  $D$-optimality,  block matrices,  Hadamard matrices,  62K05,  62K15
@article{1176347401,
     author = {Sathe, Y. S. and Shenoy, R. G.},
     title = {$A$-Optimal Weighing Designs when $N \equiv 3 (\operatorname{mod} 4)$},
     journal = {Ann. Statist.},
     volume = {17},
     number = {1},
     year = {1989},
     pages = { 1906-1915},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347401}
}
Sathe, Y. S.; Shenoy, R. G. $A$-Optimal Weighing Designs when $N \equiv 3 (\operatorname{mod} 4)$. Ann. Statist., Tome 17 (1989) no. 1, pp.  1906-1915. http://gdmltest.u-ga.fr/item/1176347401/