The Expectation of $X^1$ as a Function of $\mathbb{E}(X)$ for an Exponential Family on the Positive Line
Letac, Gerard ; Seshadri, Vanamamalai
Ann. Statist., Tome 17 (1989) no. 1, p. 1735-1741 / Harvested from Project Euclid
If the distribution of $X$ belongs to a natural exponential family on the positive real line, this note studies the expectation of the reciprocal of $X$ as a function of the expectation $m$ of $X$ and characterizes the cases where this function is an affine function of $m^{-1}$ as gamma, inverse-Gaussian, Ressel or Abel families.
Publié le : 1989-12-14
Classification:  Natural exponential families,  reciprocal of a random variable,  gamma distributions,  inverse-Gaussian distributions,  Ressel families,  Abel families,  62E10,  60E10
@article{1176347391,
     author = {Letac, Gerard and Seshadri, Vanamamalai},
     title = {The Expectation of $X^1$ as a Function of $\mathbb{E}(X)$ for an Exponential Family on the Positive Line},
     journal = {Ann. Statist.},
     volume = {17},
     number = {1},
     year = {1989},
     pages = { 1735-1741},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347391}
}
Letac, Gerard; Seshadri, Vanamamalai. The Expectation of $X^1$ as a Function of $\mathbb{E}(X)$ for an Exponential Family on the Positive Line. Ann. Statist., Tome 17 (1989) no. 1, pp.  1735-1741. http://gdmltest.u-ga.fr/item/1176347391/