Bounds for the Distribution of the Generalized Variance
Gordon, Louis
Ann. Statist., Tome 17 (1989) no. 1, p. 1684-1692 / Harvested from Project Euclid
Let $D_{p,m}$ be the determinant of the sample covariance matrix for $m + p + 1$ observations from a $p$-variate normal population having identity covariance matrix. We give bounds for the distribution of $D_{p,m}$ in terms of various chi-squared distribution functions. Let $F(\cdot \mid \nu)$ denote the chi-squared distribution function on $\nu$ degrees of freedom. We bound $P\{p(D_{p,m})^{1/p} > t\}$ above by $1 - F(t \mid p(m + 1) + \frac{1}{2}(p - 1)(p - 2))$ and below by $1 - F(t \mid p(m + 1))$. We give two more bounds involving chi-squared distributions. The proofs use a stochastic analog to the Gauss multiplication theorem.
Publié le : 1989-12-14
Classification:  Gamma function,  generalized variance,  Gauss multiplication theorem,  62H10,  33A15
@article{1176347387,
     author = {Gordon, Louis},
     title = {Bounds for the Distribution of the Generalized Variance},
     journal = {Ann. Statist.},
     volume = {17},
     number = {1},
     year = {1989},
     pages = { 1684-1692},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347387}
}
Gordon, Louis. Bounds for the Distribution of the Generalized Variance. Ann. Statist., Tome 17 (1989) no. 1, pp.  1684-1692. http://gdmltest.u-ga.fr/item/1176347387/