A Regression Type Problem
Yatracos, Yannis G.
Ann. Statist., Tome 17 (1989) no. 1, p. 1597-1607 / Harvested from Project Euclid
Let $X_1, \cdots, X_n$ be random vectors that take values in a compact set in $R^d, d = 1, 2$. Let $Y_1, \cdots, Y_n$ be random variables (the responses) which conditionally on $X_1 = x_1, \cdots, X_n = x_n$ are independent with densities $f(y \mid x_i, \theta(x_i)), i = 1, \cdots, n$. Assuming that $\theta$ lies in a sup-norm compact space $\Theta$ of real-valued functions, an $L_1$-consistent estimator (of $\theta$) is constructed via empirical measures. The rate of convergence of the estimator to the true parameter $\theta$ depends on Kolmogorov's entropy of $\Theta$.
Publié le : 1989-12-14
Classification:  Minimum distance estimation,  empirical measures,  nonparametric regression,  rates of convergence,  Kolmogorov's entropy,  62G05,  62G30
@article{1176347383,
     author = {Yatracos, Yannis G.},
     title = {A Regression Type Problem},
     journal = {Ann. Statist.},
     volume = {17},
     number = {1},
     year = {1989},
     pages = { 1597-1607},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347383}
}
Yatracos, Yannis G. A Regression Type Problem. Ann. Statist., Tome 17 (1989) no. 1, pp.  1597-1607. http://gdmltest.u-ga.fr/item/1176347383/