Inadmissibility of the Empirical Distribution Function in Continuous Invariant Problems
Yu, Qiqing
Ann. Statist., Tome 17 (1989) no. 1, p. 1347-1359 / Harvested from Project Euclid
Consider the classical invariant decision problem of estimating an unknown continuous distribution function $F,$ with the loss function $L(F, a) = \int(F(t) - a(t))^2\lbrack F(t) \rbrack^\alpha \lbrack 1 - F(t) \rbrack^\beta dF(t),$ and a random sample of size $n$ from $F.$ It is proved that the best invariant estimator is inadmissible when: 1. $ n > 0, - 1 < \alpha, \beta \leq 0 \text{and} -1 \leq \alpha + \beta.$ 2. $ n > 0, -1 < \alpha = \beta \leq - \frac{1}{2}.$ 3. $ n > 1, (\mathrm{i}) \alpha = -1 \text{and} \beta = 0, \text{or} (\mathrm{ii}) \alpha = 0 \text{and} \beta = -1.$ 4. $ n > 2, \alpha = \beta = -1.$ Thus the empirical distribution function, which is the best invariant estimator when $\alpha = \beta = -1,$ is inadmissible when $n \geq 3.$ This extends some results of Brown.
Publié le : 1989-09-14
Classification:  Admissibility,  invariant estimator,  empirical distribution function,  nonparametric estimator,  Cramer-von Mises loss,  62C15,  62D05
@article{1176347274,
     author = {Yu, Qiqing},
     title = {Inadmissibility of the Empirical Distribution Function in Continuous Invariant Problems},
     journal = {Ann. Statist.},
     volume = {17},
     number = {1},
     year = {1989},
     pages = { 1347-1359},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347274}
}
Yu, Qiqing. Inadmissibility of the Empirical Distribution Function in Continuous Invariant Problems. Ann. Statist., Tome 17 (1989) no. 1, pp.  1347-1359. http://gdmltest.u-ga.fr/item/1176347274/