An Asymptotic Lower Bound for the Local Minimax Regret in Sequential Point Estimation
Tahir, Mohamed
Ann. Statist., Tome 17 (1989) no. 1, p. 1335-1346 / Harvested from Project Euclid
Let $\Omega$ be an interval and let $F_\omega, \omega \in \Omega,$ denote a one-parameter exponential family of probability distributions on $\mathscr{R} = (-\infty, \infty),$ each of which has a finite mean $\theta,$ depending on some unknown parameter $\omega \in \Omega.$ The main results of this paper determine an asymptotic lower bound for the local minimax regret, under a general smooth loss function and for a general class of estimators of $\theta.$ This bound is obtained by first determining the limit of the Bayes regret and then maximizing with respect to the prior distribution of $\omega.$
Publié le : 1989-09-14
Classification:  Exponential families,  Bayes risk,  regret,  minimax theorem,  the martingale convergence theorem,  62L12
@article{1176347273,
     author = {Tahir, Mohamed},
     title = {An Asymptotic Lower Bound for the Local Minimax Regret in Sequential Point Estimation},
     journal = {Ann. Statist.},
     volume = {17},
     number = {1},
     year = {1989},
     pages = { 1335-1346},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347273}
}
Tahir, Mohamed. An Asymptotic Lower Bound for the Local Minimax Regret in Sequential Point Estimation. Ann. Statist., Tome 17 (1989) no. 1, pp.  1335-1346. http://gdmltest.u-ga.fr/item/1176347273/