Model Selection Under Nonstationarity: Autoregressive Models and Stochastic Linear Regression Models
Potscher, B. M.
Ann. Statist., Tome 17 (1989) no. 1, p. 1257-1274 / Harvested from Project Euclid
We give sufficient conditions for strong consistency of estimators for the order of general nonstationary autoregressive models based on the minimization of an information criterion a la Akaike's (1969) AIC. The case of a time-dependent error variance is also covered by the analysis. Furthermore, the more general case of regressor selection in stochastic regression models is treated.
Publié le : 1989-09-14
Classification:  Model selection,  order estimation,  selection of regressors,  strong consistency,  autoregression,  nonstationarity,  nonergodic models,  information criteria,  62M10,  62J05,  60G10,  62F12,  93E12
@article{1176347267,
     author = {Potscher, B. M.},
     title = {Model Selection Under Nonstationarity: Autoregressive Models and Stochastic Linear Regression Models},
     journal = {Ann. Statist.},
     volume = {17},
     number = {1},
     year = {1989},
     pages = { 1257-1274},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347267}
}
Potscher, B. M. Model Selection Under Nonstationarity: Autoregressive Models and Stochastic Linear Regression Models. Ann. Statist., Tome 17 (1989) no. 1, pp.  1257-1274. http://gdmltest.u-ga.fr/item/1176347267/