Robust Nonparametric Regression Estimation for Dependent Observations
Boente, Graciela ; Fraiman, Ricardo
Ann. Statist., Tome 17 (1989) no. 1, p. 1242-1256 / Harvested from Project Euclid
Robust nonparametric estimators for regression and autoregression are proposed for $\varphi$- and $\alpha$-mixing processes. Two families of $M$-type robust equivariant estimators are considered: (i) estimators based on kernel methods and (ii) estimators based on $k$-nearest neighbor kernel methods. Strong consistency of both families is proved under mild conditions. For the first class the result is true under no assumptions whatsoever on the distribution of the observations.
Publié le : 1989-09-14
Classification:  Robust regression estimation,  kernel estimation,  $k$-nearest neighbor estimation,  $\varphi$-mixing,  $\alpha$-mixing,  strong consistency,  62G05,  62M10
@article{1176347266,
     author = {Boente, Graciela and Fraiman, Ricardo},
     title = {Robust Nonparametric Regression Estimation for Dependent Observations},
     journal = {Ann. Statist.},
     volume = {17},
     number = {1},
     year = {1989},
     pages = { 1242-1256},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347266}
}
Boente, Graciela; Fraiman, Ricardo. Robust Nonparametric Regression Estimation for Dependent Observations. Ann. Statist., Tome 17 (1989) no. 1, pp.  1242-1256. http://gdmltest.u-ga.fr/item/1176347266/