On Estimating the Dependence Between Two Point Processes
Doss, Hani
Ann. Statist., Tome 17 (1989) no. 1, p. 749-763 / Harvested from Project Euclid
To assess the dependence structure in a stationary bivariate point process the second-order distribution can be very useful. We prove that the natural estimates of this distribution, based on a realization $A_1 < A_2 < \cdots < A_{n_A}, B_1 < B_2 < \cdots < B_{n_B}$ are asymptotically normal and we present a method for constructing approximate confidence intervals for this distribution.
Publié le : 1989-06-14
Classification:  Bivariate point process,  Ripley's $K$-function,  cross-intensity function,  stationary point process,  stationary sequence,  62M09,  62M07,  62G05,  62G10
@article{1176347140,
     author = {Doss, Hani},
     title = {On Estimating the Dependence Between Two Point Processes},
     journal = {Ann. Statist.},
     volume = {17},
     number = {1},
     year = {1989},
     pages = { 749-763},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347140}
}
Doss, Hani. On Estimating the Dependence Between Two Point Processes. Ann. Statist., Tome 17 (1989) no. 1, pp.  749-763. http://gdmltest.u-ga.fr/item/1176347140/