On $M$-Processes and $M$-Estimation
Welsh, A. H.
Ann. Statist., Tome 17 (1989) no. 1, p. 337-361 / Harvested from Project Euclid
We relate the asymptotic behavior of $M$-estimators of the regression parameter in a linear model in which the dimension of the regression parameter may increase with the sample size to the stochastic equicontinuity of an associated $M$-process. The approach synthesises a number of results for the dimensionally fixed regression model and then extends these results in a direct unified way. The resulting theorems require only mild conditions on the $\psi$-function and the underlying distribution function. In particular, the results do not require $\psi$ to be smooth and hence can be applied to such estimators as the least absolute deviations estimator. We also treat one-step $M$-estimation.
Publié le : 1989-03-14
Classification:  Asymptotic linearity,  large $p$ asymptotics,  $M$-estimators,  one-step $M$-estimators,  regression quantiles,  robust estimation,  stochastic equicontinuity,  62G05,  62J05,  60F05
@article{1176347021,
     author = {Welsh, A. H.},
     title = {On $M$-Processes and $M$-Estimation},
     journal = {Ann. Statist.},
     volume = {17},
     number = {1},
     year = {1989},
     pages = { 337-361},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347021}
}
Welsh, A. H. On $M$-Processes and $M$-Estimation. Ann. Statist., Tome 17 (1989) no. 1, pp.  337-361. http://gdmltest.u-ga.fr/item/1176347021/