Spherical Regression with Errors in Variables
Chang, Ted
Ann. Statist., Tome 17 (1989) no. 1, p. 293-306 / Harvested from Project Euclid
Suppose $u_1, \cdots, u_n, v_1, \cdots, v_n$ are random points on the sphere such that for unknown points $\xi_1, \cdots, \xi_n$ and unknown rotation $A_0$, the distribution of $u_i$ depends only on $u^t_i\xi_i$ and that of $v_i$ on $v^t_iA_0\xi_i$. This paper provides asymptotic tests and confidence regions for $A_0$ and for its axis of rotation. Results are given in arbitrary dimension.
Publié le : 1989-03-14
Classification:  Estimated rotations on spheres,  62J99,  86A60
@article{1176347017,
     author = {Chang, Ted},
     title = {Spherical Regression with Errors in Variables},
     journal = {Ann. Statist.},
     volume = {17},
     number = {1},
     year = {1989},
     pages = { 293-306},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176347017}
}
Chang, Ted. Spherical Regression with Errors in Variables. Ann. Statist., Tome 17 (1989) no. 1, pp.  293-306. http://gdmltest.u-ga.fr/item/1176347017/