Parametric Robustness: Small Biases can be Worthwhile
Bickel, P. J.
Ann. Statist., Tome 12 (1984) no. 1, p. 864-879 / Harvested from Project Euclid
We study estimation of the parameters of a Gaussian linear model $\mathscr{M}_0$ when we entertain the possibility that $\mathscr{M}_0$ is invalid and a larger model $\mathscr{M}_1$ should be assumed. Estimates are robust if their maximum risk over $\mathscr{M}_1$ is finite and the most robust estimate is the least squares estimate under $\mathscr{M}_1$. We apply notions of Hodges and Lehmann (1952) and Efron and Morris (1971) to obtain (biased) estimates which do well under $\mathscr{M}_0$ at a small price in robustness. Extensions to confidence intervals, simultaneous estimation of several parameters and large sample approximations applying to nested parametric models are also discussed.
Publié le : 1984-09-14
Classification:  Parametric robustness,  pretesting,  limited translation estimates,  confidence intervals,  62F10,  62F25
@article{1176346707,
     author = {Bickel, P. J.},
     title = {Parametric Robustness: Small Biases can be Worthwhile},
     journal = {Ann. Statist.},
     volume = {12},
     number = {1},
     year = {1984},
     pages = { 864-879},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176346707}
}
Bickel, P. J. Parametric Robustness: Small Biases can be Worthwhile. Ann. Statist., Tome 12 (1984) no. 1, pp.  864-879. http://gdmltest.u-ga.fr/item/1176346707/