The Admissibility of the Empirical Distribution Function
Cohen, Michael P. ; Kuo, Lynn
Ann. Statist., Tome 13 (1985) no. 1, p. 262-271 / Harvested from Project Euclid
Consider the problem of estimating an unknown distribution function $F$ from the class of all distribution functions given a random sample of size $n$ from $F$. It is proved that the empirical distribution function is admissible for the loss functions $L(F, \hat{F}) = \int (\hat{F}(t) - F(t))^2(F(t))^\alpha(1 - F(t))^b dW(t)$ for any $a < 1$ and $b < 1$ and finite measure $W$. Related results for simultaneous estimation of distribution functions and for finite population sampling are also given.
Publié le : 1985-03-14
Classification:  Admissibility,  empirical distribution function,  i.i.d. sample,  weighted quadratic loss,  simple random sampling without replacement,  finite population,  multinomial distribution,  62C15,  62G30,  62D05
@article{1176346591,
     author = {Cohen, Michael P. and Kuo, Lynn},
     title = {The Admissibility of the Empirical Distribution Function},
     journal = {Ann. Statist.},
     volume = {13},
     number = {1},
     year = {1985},
     pages = { 262-271},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176346591}
}
Cohen, Michael P.; Kuo, Lynn. The Admissibility of the Empirical Distribution Function. Ann. Statist., Tome 13 (1985) no. 1, pp.  262-271. http://gdmltest.u-ga.fr/item/1176346591/