Invariance Principle for Symmetric Statistics
Mandelbaum, Avi ; Taqqu, Murad S.
Ann. Statist., Tome 12 (1984) no. 1, p. 483-496 / Harvested from Project Euclid
We derive invariance principles for processes associated with symmetric statistics of arbitrary order. Using a Poisson sample size, such processes can be viewed as functionals of a Poisson Point Process. Properly normalized, these functionals converge in distribution to functionals of a Gaussian random measure associated with the distribution of the observations. We thus obtain a natural description of the limiting process in terms of multiple Wiener integrals. The results are used to derive asymptotic expansions of processes arising from arbitrary square integrable $U$-statistics.
Publié le : 1984-06-14
Classification:  Symmetric statistics,  invariance principle,  multiple Wiener integral,  $U$-statistics,  Hermite polynomials,  60F17,  62E20,  62G05,  60G99,  60K99
@article{1176346501,
     author = {Mandelbaum, Avi and Taqqu, Murad S.},
     title = {Invariance Principle for Symmetric Statistics},
     journal = {Ann. Statist.},
     volume = {12},
     number = {1},
     year = {1984},
     pages = { 483-496},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176346501}
}
Mandelbaum, Avi; Taqqu, Murad S. Invariance Principle for Symmetric Statistics. Ann. Statist., Tome 12 (1984) no. 1, pp.  483-496. http://gdmltest.u-ga.fr/item/1176346501/