Invariant Confidence Sequences for Some Parameters in a Multivariate Linear Regression Model
Sinha, B. K. ; Sarkar, S. K.
Ann. Statist., Tome 12 (1984) no. 1, p. 301-310 / Harvested from Project Euclid
Let $\mathbf{X}_1, \mathbf{X}_2,\cdots$ be independent $p$-variate normal vectors with $E \mathbf{X}_\alpha \equiv \beta \mathbf{Y}_\alpha, \alpha = 1,2,\cdots$ and same p.d. dispersion matrix $\Sigma$. Here $\beta: p \times q$ and $\Sigma$ are unknown parameters and $\mathbf{Y}_\alpha$'s are known $q \times 1$ vectors. Writing $\beta = (\beta'_1 \beta'_2)' = (\beta_{(1)}\beta_{(2)})$ with $\beta_i: p_i \times q(p_1 + p_2 = p)$ and $\beta_{(i)}: p \times q_i(q_1 + q_2 = q)$, we have constructed invariant confidence sequences for (i) $\beta$, (ii) $\beta_{(1)}$, (iii) $\beta_1$ when $\beta_2 = 0$ and (iv) $\sigma^2 = |\Sigma|$. This uses the basic ideas of Robbins (1970) and generalizes some of his and Lai's (1976) results. In the process alternative simpler solutions of some of Khan's results (1978) are obtained.
Publié le : 1984-03-14
Classification:  Confidence sequences,  likelihood ratio martingales,  multivariate normal distribution,  maximal invariant,  62F25,  62L10,  62H99
@article{1176346408,
     author = {Sinha, B. K. and Sarkar, S. K.},
     title = {Invariant Confidence Sequences for Some Parameters in a Multivariate Linear Regression Model},
     journal = {Ann. Statist.},
     volume = {12},
     number = {1},
     year = {1984},
     pages = { 301-310},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176346408}
}
Sinha, B. K.; Sarkar, S. K. Invariant Confidence Sequences for Some Parameters in a Multivariate Linear Regression Model. Ann. Statist., Tome 12 (1984) no. 1, pp.  301-310. http://gdmltest.u-ga.fr/item/1176346408/