Processing math: 0%
The Equivalence of Weak, Strong and Complete Convergence in L_1 for Kernel Density Estimates
Devroye, Luc
Ann. Statist., Tome 11 (1983) no. 1, p. 896-904 / Harvested from Project Euclid
Let f be a density on R^d, and let f_n be the kernel estimate of f, f_n(x) = (nh^d)^{-1} \sum^n_{i=1} K((x - X_i)/h) where h = h_n is a sequence of positive numbers, and K is an absolutely integrable function with \int K(x) dx = 1. Let J_n = \int |f_n(x) - f(x)| dx. We show that when \lim_nh = 0 and \lim_nnh^d = \infty, then for every \varepsilon > 0 there exist constants r, n_0 > 0 such that P(J_n \geq \varepsilon) \leq \exp(-rn), n \geq n_0. Also, when J_n \rightarrow 0 in probability as n \rightarrow \infty and K is a density, then \lim_nh = 0 and \lim_nnh^d = \infty.
Publié le : 1983-09-14
Classification:  Nonparametric density estimation,  L_1 convergence,  kernel estimate,  strong consistency,  60F15,  62G05
@article{1176346255,
     author = {Devroye, Luc},
     title = {The Equivalence of Weak, Strong and Complete Convergence in $L\_1$ for Kernel Density Estimates},
     journal = {Ann. Statist.},
     volume = {11},
     number = {1},
     year = {1983},
     pages = { 896-904},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176346255}
}
Devroye, Luc. The Equivalence of Weak, Strong and Complete Convergence in $L_1$ for Kernel Density Estimates. Ann. Statist., Tome 11 (1983) no. 1, pp.  896-904. http://gdmltest.u-ga.fr/item/1176346255/