Bayesian Bioassay Design
Kuo, Lynn
Ann. Statist., Tome 11 (1983) no. 1, p. 886-895 / Harvested from Project Euclid
A Bayesian treatment of the quantal bioassay design problem is given. It is assumed that the potency curve is a Dirichlet random distribution $F$ with parameter $\alpha(t) = MF_0(t)$, and that $n_1, \cdots, n_L$ animals are treated at drug levels $t_1, \cdots, t_L$ respectively. The optimal design levels $t_1, \cdots, t_L$ that minimize the Bayes risk for weighted integrated quadratic loss functions are found in the following cases: (i) $L = 1$ and the weight function arbitrary; (ii) uniform prior guess, uniform weight and two animals treated; and (iii) uniform weight and $L$ arbitrary, but $M \rightarrow 0$. These results disprove a conjecture of Antoniak.
Publié le : 1983-09-14
Classification:  Dirichlet process,  mixtures of Dirichlet processes,  quantal bioassay,  potency curve,  threshold of tolerance,  Bayes risk,  optimal design,  62K05,  62P10,  62C10
@article{1176346254,
     author = {Kuo, Lynn},
     title = {Bayesian Bioassay Design},
     journal = {Ann. Statist.},
     volume = {11},
     number = {1},
     year = {1983},
     pages = { 886-895},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176346254}
}
Kuo, Lynn. Bayesian Bioassay Design. Ann. Statist., Tome 11 (1983) no. 1, pp.  886-895. http://gdmltest.u-ga.fr/item/1176346254/