Justification for a $K - S$ Type Test for the Slope of a Truncated Regression
Bhattacharya, P. K.
Ann. Statist., Tome 11 (1983) no. 1, p. 697-701 / Harvested from Project Euclid
A $K - S$ type statistic computed from sequential ranks has been proposed in the astrophysics literature for testing the slope of a truncated regression. There is an easy heuristic justification for the test in the nontruncated case, but it fails under truncation. This paper extends the heuristic justification to the truncated case and outlines a more complete proof of the asymptotic property.
Publié le : 1983-06-14
Classification:  Truncated regression,  Kolmogorov-Smirnov test,  sequential rank,  asymptotic distribution,  Brownian bridge,  62G10,  62E20,  62J05
@article{1176346174,
     author = {Bhattacharya, P. K.},
     title = {Justification for a $K - S$ Type Test for the Slope of a Truncated Regression},
     journal = {Ann. Statist.},
     volume = {11},
     number = {1},
     year = {1983},
     pages = { 697-701},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176346174}
}
Bhattacharya, P. K. Justification for a $K - S$ Type Test for the Slope of a Truncated Regression. Ann. Statist., Tome 11 (1983) no. 1, pp.  697-701. http://gdmltest.u-ga.fr/item/1176346174/