We consider the selection of the best subset of independent variables of a fixed size for possible inclusion in a regression model. The classical procedures (largest $\mathbb{R}^2$ to enter) are shown to be uniformly invariant Bayes in the sense of Paulson (1952) and Kudo (1956).
@article{1176346072,
author = {Butler, Ronald W.},
title = {Optimal Properties of One-Step Variable Selection in Regression},
journal = {Ann. Statist.},
volume = {11},
number = {1},
year = {1983},
pages = { 219-224},
language = {en},
url = {http://dml.mathdoc.fr/item/1176346072}
}
Butler, Ronald W. Optimal Properties of One-Step Variable Selection in Regression. Ann. Statist., Tome 11 (1983) no. 1, pp. 219-224. http://gdmltest.u-ga.fr/item/1176346072/