On Measuring the Conformity of a Parameter Set to a Trend, with Applications
Robertson, Tim ; Wright, F. T.
Ann. Statist., Tome 10 (1982) no. 1, p. 1234-1245 / Harvested from Project Euclid
Consider the hypothesis $H_1: \theta_1 \geq \theta_2 \geq \cdots \geq \theta_k$ regarding a collection, $\theta_1, \theta_2, \cdots, \theta_k$, of unknown parameters. It is clear that this trend is reflected in certain possible parameter sets more than in others. A quantification of this notion of conformity to a trend is studied. Applications of the resulting theory to several order restricted hypothesis tests are presented.
Publié le : 1982-12-14
Classification:  Order restricted inference,  tests for and against a trend,  isotonic inference,  Chi-bar-squared distribution,  least favorable configurations,  62F03,  62E15
@article{1176345988,
     author = {Robertson, Tim and Wright, F. T.},
     title = {On Measuring the Conformity of a Parameter Set to a Trend, with Applications},
     journal = {Ann. Statist.},
     volume = {10},
     number = {1},
     year = {1982},
     pages = { 1234-1245},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345988}
}
Robertson, Tim; Wright, F. T. On Measuring the Conformity of a Parameter Set to a Trend, with Applications. Ann. Statist., Tome 10 (1982) no. 1, pp.  1234-1245. http://gdmltest.u-ga.fr/item/1176345988/