$L$- and $R$-Estimation and the Minimax Property
Sacks, Jerome ; Ylvisaker, Donald
Ann. Statist., Tome 10 (1982) no. 1, p. 643-645 / Harvested from Project Euclid
Let $\{X_i\}$ be a sample from $F(x - \theta)$ where $F$ is in a class $\mathscr{F}$ of symmetric distributions on the line and $\theta$ is the location parameter to be estimated. Huber has shown that maximum likelihood estimation has a minimax property over a convex $\mathscr{F}$. Here a simple convex $\mathscr{F}$ is given for which neither $L$- nor $R$-estimation has the minimax property. In particular, this example shows that a recent assertion concerning $L$-estimation is not true.
Publié le : 1982-06-14
Classification:  Location parameter estimation,  robust estimation,  minimax property,  62G35,  62G20
@article{1176345808,
     author = {Sacks, Jerome and Ylvisaker, Donald},
     title = {$L$- and $R$-Estimation and the Minimax Property},
     journal = {Ann. Statist.},
     volume = {10},
     number = {1},
     year = {1982},
     pages = { 643-645},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345808}
}
Sacks, Jerome; Ylvisaker, Donald. $L$- and $R$-Estimation and the Minimax Property. Ann. Statist., Tome 10 (1982) no. 1, pp.  643-645. http://gdmltest.u-ga.fr/item/1176345808/