A Characterization Problem in Stationary Time Series
Slud, Eric V.
Ann. Statist., Tome 10 (1982) no. 1, p. 630-633 / Harvested from Project Euclid
If a strictly stationary process $\{Z_k\}$ has residuals $Z_{k+1} - \sum^k_{j=1} a_{k,j}Z_j$ independent of $(Z_1, \cdots, Z_k)$ for all $k \geq m$, it is shown that the process is Gaussian or degenerate or $m$-step Markovian. Generalized (nonlinear) autoregressive stationary processes are defined and partially characterized.
Publié le : 1982-06-14
Classification:  Stationary time series,  generalized autoregressive process,  characterization problem,  nonlinear prediction,  62E10,  62M10,  60G10,  60E10
@article{1176345805,
     author = {Slud, Eric V.},
     title = {A Characterization Problem in Stationary Time Series},
     journal = {Ann. Statist.},
     volume = {10},
     number = {1},
     year = {1982},
     pages = { 630-633},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345805}
}
Slud, Eric V. A Characterization Problem in Stationary Time Series. Ann. Statist., Tome 10 (1982) no. 1, pp.  630-633. http://gdmltest.u-ga.fr/item/1176345805/