The Asymptotic Effect of Substituting Estimators for Parameters in Certain Types of Statistics
Pierce, Donald A.
Ann. Statist., Tome 10 (1982) no. 1, p. 475-478 / Harvested from Project Euclid
In a variety of statistical problems, one is interested in the limiting distribution of statistics $\hat{T}_n = T_n(y_1, y_2, \cdots, y_n; \hat{\lambda}_n)$, where $\hat{\lambda}_n$ is an estimator of a parameter in the distribution of the $y_i$ and where the limiting distribution of $T_n = T_n(y_1, y_2, \cdots, y_n; \lambda)$ is relatively easy to find. For cases in which the limiting distribution of $T_n$ is normal with mean independent of $\lambda$, a useful method is given for finding the limiting distribution of $\hat{T}_n$. A simple application to testing normality in regression models is given.
Publié le : 1982-06-14
Classification:  Asymptotic distributions,  goodness-of-fit tests,  nuisance parameters,  residuals,  62E20,  62F05
@article{1176345788,
     author = {Pierce, Donald A.},
     title = {The Asymptotic Effect of Substituting Estimators for Parameters in Certain Types of Statistics},
     journal = {Ann. Statist.},
     volume = {10},
     number = {1},
     year = {1982},
     pages = { 475-478},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345788}
}
Pierce, Donald A. The Asymptotic Effect of Substituting Estimators for Parameters in Certain Types of Statistics. Ann. Statist., Tome 10 (1982) no. 1, pp.  475-478. http://gdmltest.u-ga.fr/item/1176345788/