A Central Limit Theorem for Stationary Processes and the Parameter Estimation of Linear Processes
Hosoya, Yuzo ; Taniguchi, Masanobu
Ann. Statist., Tome 10 (1982) no. 1, p. 132-153 / Harvested from Project Euclid
A central limit theorem is proved for the sample covariances of a linear process. The sufficient conditions for the theorem are described by more natural ones than usual. We apply this theorem to the parameter estimation of a fitted spectral model, which does not necessarily include the true spectral density of the linear process. We also deal with estimation problems for an autoregressive signal plus white noise. A general result is given for efficiency of Newton-Raphson iterations of the likelihood equation.
Publié le : 1982-03-14
Classification:  Stationary processes,  central limit theorem,  linear processes,  spectral density,  periodogram,  Gaussian maximum likelihood estimate,  robustness,  autoregressive signal with white noise,  Newton-Raphson iteration,  60F15,  62M15,  60G10,  60G35
@article{1176345696,
     author = {Hosoya, Yuzo and Taniguchi, Masanobu},
     title = {A Central Limit Theorem for Stationary Processes and the Parameter Estimation of Linear Processes},
     journal = {Ann. Statist.},
     volume = {10},
     number = {1},
     year = {1982},
     pages = { 132-153},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345696}
}
Hosoya, Yuzo; Taniguchi, Masanobu. A Central Limit Theorem for Stationary Processes and the Parameter Estimation of Linear Processes. Ann. Statist., Tome 10 (1982) no. 1, pp.  132-153. http://gdmltest.u-ga.fr/item/1176345696/