Maximizing the Variance of $M$-Estimators Using the Generalized Method of Moment Spaces
Collins, John R. ; Portnoy, Stephen L.
Ann. Statist., Tome 9 (1981) no. 1, p. 567-577 / Harvested from Project Euclid
The problem considered is that of optimizing a function of a finite number of linear functionals over an infinite dimensional convex set $S$. It is shown that under some reasonably general conditions the method of moment spaces can be used to reduce the problem to one of optimizing over a simple finite dimensional set (generally a set of convex combinations of extreme points of $S$). The results are applied to finding the maximum asymptotic variance of M-estimators over classes of distributions arising in the theory of robust estimation.
Publié le : 1981-05-14
Classification:  Method of moment spaces,  robust estimation,  asymptotic variance,  62G35,  62G05
@article{1176345460,
     author = {Collins, John R. and Portnoy, Stephen L.},
     title = {Maximizing the Variance of $M$-Estimators Using the Generalized Method of Moment Spaces},
     journal = {Ann. Statist.},
     volume = {9},
     number = {1},
     year = {1981},
     pages = { 567-577},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345460}
}
Collins, John R.; Portnoy, Stephen L. Maximizing the Variance of $M$-Estimators Using the Generalized Method of Moment Spaces. Ann. Statist., Tome 9 (1981) no. 1, pp.  567-577. http://gdmltest.u-ga.fr/item/1176345460/