On the Projections of Isotropic Distributions
Eaton, Morris L.
Ann. Statist., Tome 9 (1981) no. 1, p. 391-400 / Harvested from Project Euclid
The class of distributions on $R^m, 1 \leq m < \infty$ which are the $m$-dimensional marginal distributions of orthogonally invariant distributions on $R^{m + n}$ is characterized. This result is then used to provide a partial answer to the following question: given a symmetric distribution on $R^1$ and an integer $n \geq 2$, under what conditions will there exist a random vector $X \in R^n$ such that $a'X$ has the given distribution (up to a positive scale factor) for all $a \neq 0, a \in R^m$.
Publié le : 1981-03-14
Classification:  $n$-dimensional distributions,  scale mixtures of normals,  orthogonally invariant distributions,  60E05,  62E10,  62H05
@article{1176345404,
     author = {Eaton, Morris L.},
     title = {On the Projections of Isotropic Distributions},
     journal = {Ann. Statist.},
     volume = {9},
     number = {1},
     year = {1981},
     pages = { 391-400},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345404}
}
Eaton, Morris L. On the Projections of Isotropic Distributions. Ann. Statist., Tome 9 (1981) no. 1, pp.  391-400. http://gdmltest.u-ga.fr/item/1176345404/