Strong Uniform Consistency for Nonparametric Survival Curve Estimators from Randomly Censored Data
Foldes, Antonia ; Rejto, Lidia
Ann. Statist., Tome 9 (1981) no. 1, p. 122-129 / Harvested from Project Euclid
Let $X_1, \cdots, X_n$ be i.i.d. $P(X > u) = F(u)$ and $Y_1, \cdots, Y_n$ be i.i.d. $P(Y > u) = G(u)$, where both $F$ and $G$ are unknown continuous distributions. For $i = 1, \cdots, n$ set $\delta_i = 1$ if $X_i \leq Y_i$ and 0 if $X_i > Y_i$ and $Z_i = \min \{X_i, Y_i\}$. One way to estimate $F$ from the observations $(Z_i, \delta_i) i = 1, \cdots, n$ is by means of the product limit (PL) estimator, $F^\ast_n$ (Kaplan-Meier, [8]). In this paper it is shown that $F^\ast_n$ is uniformly almost sure consistent with rate $O(\sqrt{\log n} / \sqrt n)$, that is $P(\sup_{0 \leq u \leq T}|F^\ast_n(u) - F(u)| = O(\sqrt{\log n/n})) = 1.$ Assuming that $F$ is distributed according to a Dirichlet process (Ferguson, [3]) with parameter $\alpha$, Susarla and Van Ryzin ([11]) obtained the Bayes estimator $F^\alpha_n$ of $F$. In the present paper a similar result is established for the Bayes estimator, namely: $P(\sup_{0 \leq u \leq T}| F^\alpha_n(u) - F(u)| = O(\sqrt{(\log n)^{1 + \gamma}} / \sqrt n)) = 1 \quad (\gamma > 0).$
Publié le : 1981-01-14
Classification:  Product limit,  survival distribution,  strong uniform consistency,  censored data,  Bayes estimator,  60F16,  62G05
@article{1176345337,
     author = {Foldes, Antonia and Rejto, Lidia},
     title = {Strong Uniform Consistency for Nonparametric Survival Curve Estimators from Randomly Censored Data},
     journal = {Ann. Statist.},
     volume = {9},
     number = {1},
     year = {1981},
     pages = { 122-129},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345337}
}
Foldes, Antonia; Rejto, Lidia. Strong Uniform Consistency for Nonparametric Survival Curve Estimators from Randomly Censored Data. Ann. Statist., Tome 9 (1981) no. 1, pp.  122-129. http://gdmltest.u-ga.fr/item/1176345337/