Asymptotic Integrated Mean Square Error Using Least Squares and Bias Minimizing Splines
Agarwal, Girdhar G. ; Studden, W. J.
Ann. Statist., Tome 8 (1980) no. 1, p. 1307-1325 / Harvested from Project Euclid
Let $S^d_k$ be the set of $d$th order splines on $\lbrack 0, 1 \rbrack$ having $k$ knots $\xi_1 < \xi_2 \cdots < \xi_k$. We consider the estimation of a sufficiently smooth response function $g$, using $n$ uncorrelated observations, by an element $s$ of $S^d_k$. For large $n$ and $k$ we have discussed the asymptotic behavior of the integrated mean square error (IMSE) for two types of estimators: (i) the least squares estimator and (ii) a bias minimizing estimator. The asymptotic expression for IMSE is minimized with respect to three variables. (i) the allocation of observation (ii) the displacement of knots $\xi_1 < \cdots < \xi_k$ and (iii) number of knots.
Publié le : 1980-11-14
Classification:  Optimal design,  least square estimator,  bias minimizing estimator,  approximation,  $B$-splines,  Bernoulli polynomial,  $L_2$-projection operator,  62K05,  62J05,  62F10,  41A50,  41A60
@article{1176345203,
     author = {Agarwal, Girdhar G. and Studden, W. J.},
     title = {Asymptotic Integrated Mean Square Error Using Least Squares and Bias Minimizing Splines},
     journal = {Ann. Statist.},
     volume = {8},
     number = {1},
     year = {1980},
     pages = { 1307-1325},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345203}
}
Agarwal, Girdhar G.; Studden, W. J. Asymptotic Integrated Mean Square Error Using Least Squares and Bias Minimizing Splines. Ann. Statist., Tome 8 (1980) no. 1, pp.  1307-1325. http://gdmltest.u-ga.fr/item/1176345203/