A Bayesian Approach to a Problem in Sequential Estimation
Rasmussen, Shelley L.
Ann. Statist., Tome 8 (1980) no. 1, p. 1229-1243 / Harvested from Project Euclid
This paper considers the problem of sequentially estimating the mean of a normal distribution when the variance is unknown. A continuous time analogue of the discrete time problem is studied. For $L$ in a class of loss functions, properties of the value function and optimal continuation region of $L$ are presented. Asymptotic expansions are found for the value function and the optimal boundary function of the loss function $L$.
Publié le : 1980-11-14
Classification:  Bayesian sequential estimation,  normal distribution,  gamma distribution,  normal-gamma prior distribution,  loss function,  value function,  optimal continuation region,  optimal stopping rule,  asymptotic approximations,  62L12,  62F10,  62L15,  60J25,  60J30,  62F15
@article{1176345196,
     author = {Rasmussen, Shelley L.},
     title = {A Bayesian Approach to a Problem in Sequential Estimation},
     journal = {Ann. Statist.},
     volume = {8},
     number = {1},
     year = {1980},
     pages = { 1229-1243},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345196}
}
Rasmussen, Shelley L. A Bayesian Approach to a Problem in Sequential Estimation. Ann. Statist., Tome 8 (1980) no. 1, pp.  1229-1243. http://gdmltest.u-ga.fr/item/1176345196/