Canonical Variables as Optimal Predictors
Yohai, V. J. ; Ben, M. S. Garcia
Ann. Statist., Tome 8 (1980) no. 1, p. 865-869 / Harvested from Project Euclid
Let $\mathbf{X} = (X_1, \cdots, X_m)'$ and $\mathbf{Y} = (Y_1, \cdots, Y_n)'$ be two random vectors. Given any random vector $\mathbf{Z}$, let $\mathbf{Y}^\ast_Z$ be the best linear predictor of $\mathbf{Y}$ based on $\mathbf{Z}$. Let $p$ be any natural number smaller than $m$. We consider the problem of finding the $p$-dimensional random vector $\mathbf{Z} = (Z_1, \cdots, Z_p)'$ where each component $Z_i$ is a linear function of $\mathbf{X}$, which minimizes the determinant of $E(\mathbf{Y} - \mathbf{Y}^\ast_Z)(\mathbf{Y} - \mathbf{Y}^\ast_Z)'$. We show that $Z_1, \cdots, Z_p$ coincide with the first $p$ canonical variables (except for a nonsingular linear transformation). We also show that the square of the $(p + 1)$th canonical correlation coefficient measures the relative improvement in the prediction of $\mathbf{Y}$ when $p + 1 Z_i$'s are used instead of $p$.
Publié le : 1980-07-14
Classification:  Canonical variables,  canonical correlations,  linear predictors,  62H20
@article{1176345079,
     author = {Yohai, V. J. and Ben, M. S. Garcia},
     title = {Canonical Variables as Optimal Predictors},
     journal = {Ann. Statist.},
     volume = {8},
     number = {1},
     year = {1980},
     pages = { 865-869},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345079}
}
Yohai, V. J.; Ben, M. S. Garcia. Canonical Variables as Optimal Predictors. Ann. Statist., Tome 8 (1980) no. 1, pp.  865-869. http://gdmltest.u-ga.fr/item/1176345079/