Nonparametric Probability Density Estimation by Discrete Maximum Penalized- Likelihood Criteria
Scott, D. W. ; Tapia, R. A. ; Thompson, J. R.
Ann. Statist., Tome 8 (1980) no. 1, p. 820-832 / Harvested from Project Euclid
A nonparametric probability density estimator is proposed that is optimal with respect to a discretized form of a continuous penalized-likelihood criterion functional. Approximation results relating the discrete estimator to the estimate obtained by solving the corresponding infinite-dimensional problem are presented. The discrete estimator is shown to be consistent. The numerical implementation of this discrete estimator is outlined and examples displayed. A simulation study compares the integrated mean square error of the discrete estimator with that of the well-known kernel estimators. Asymptotic rates of convergence of the discrete estimator are also investigated.
Publié le : 1980-07-14
Classification:  G2G05,  G2E10,  Nonparametric density estimation,  maximum likelihood estimation,  kernel density estimation
@article{1176345074,
     author = {Scott, D. W. and Tapia, R. A. and Thompson, J. R.},
     title = {Nonparametric Probability Density Estimation by Discrete Maximum Penalized- Likelihood Criteria},
     journal = {Ann. Statist.},
     volume = {8},
     number = {1},
     year = {1980},
     pages = { 820-832},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345074}
}
Scott, D. W.; Tapia, R. A.; Thompson, J. R. Nonparametric Probability Density Estimation by Discrete Maximum Penalized- Likelihood Criteria. Ann. Statist., Tome 8 (1980) no. 1, pp.  820-832. http://gdmltest.u-ga.fr/item/1176345074/