A Note on Convergence Rates for the Product Limit Estimator
Phadia, E. G. ; Ryzin, J. Van
Ann. Statist., Tome 8 (1980) no. 1, p. 673-678 / Harvested from Project Euclid
In this note, we give a lemma which shows that the expected squared difference between the Bayes estimator with a Dirichlet process prior and the Kaplan-Meier product limit (PL) estimator for a survival function based on censored data is $O(n^{-2})$. This lemma, together with already proven pointwise consistency properties of the Bayes estimator, is used to establish two properties of the PL estimator; namely, the mean square consistency of the PL estimator with rate $O(n^{-1})$ and strong consistency of the PL estimator with rate $o(n^{-\frac{1}{2}} \log n)$.
Publié le : 1980-05-14
Classification:  Product limit estimator,  survival distribution,  Bayes estimator,  rates of convergence,  strong consistency,  mean square consistency,  censored data,  62G05,  60F99
@article{1176345017,
     author = {Phadia, E. G. and Ryzin, J. Van},
     title = {A Note on Convergence Rates for the Product Limit Estimator},
     journal = {Ann. Statist.},
     volume = {8},
     number = {1},
     year = {1980},
     pages = { 673-678},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176345017}
}
Phadia, E. G.; Ryzin, J. Van. A Note on Convergence Rates for the Product Limit Estimator. Ann. Statist., Tome 8 (1980) no. 1, pp.  673-678. http://gdmltest.u-ga.fr/item/1176345017/