Asymptotically Efficient Selection of the Order of the Model for Estimating Parameters of a Linear Process
Shibata, Ritei
Ann. Statist., Tome 8 (1980) no. 1, p. 147-164 / Harvested from Project Euclid
Let $\{x_t\}$ be a linear stationary process of the form $x_t + \Sigma_{1\leqslant i<\infty}a_ix_{t-i} = e_t$, where $\{e_t\}$ is a sequence of i.i.d. normal random variables with mean 0 and variance $\sigma^2$. Given observations $x_1, \cdots, x_n$, least squares estimates $\hat{a}(k)$ of $a' = (a_1, a_2, \cdots)$, and $\hat{\sigma}^2_k$ of $\sigma^2$ are obtained if the $k$th order autoregressive model is assumed. By using $\hat{a}(k)$, we can also estimate coefficients of the best predictor based on $k$ successive realizations. An asymptotic lower bound is obtained for the mean squared error of the estimated predictor when $k$ is selected from the data. If $k$ is selected so as to minimize $S_n(k) = (n + 2k)\hat{\sigma}^2_k$, then the bound is attained in the limit. The key assumption is that the order of the autoregression of $\{x_t\}$ is infinite.
Publié le : 1980-01-14
Classification:  Autoregression,  time series models,  prediction,  efficiency,  model selection,  62M10,  62M20,  62E20
@article{1176344897,
     author = {Shibata, Ritei},
     title = {Asymptotically Efficient Selection of the Order of the Model for Estimating Parameters of a Linear Process},
     journal = {Ann. Statist.},
     volume = {8},
     number = {1},
     year = {1980},
     pages = { 147-164},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176344897}
}
Shibata, Ritei. Asymptotically Efficient Selection of the Order of the Model for Estimating Parameters of a Linear Process. Ann. Statist., Tome 8 (1980) no. 1, pp.  147-164. http://gdmltest.u-ga.fr/item/1176344897/