Strong Consistency of Least Squares Estimates in Dynamic Models
Anderson, T. W. ; Taylor, John B.
Ann. Statist., Tome 7 (1979) no. 1, p. 484-489 / Harvested from Project Euclid
The least squares estimate of the parameter matrix $\mathbf{B}$ in the model $\mathbf{y}_t = \mathbf{B'x}_t + \mathbf{u}_t$, where $\mathbf{u}_t$ is an $m$-component vector of unobservable disturbances and $x_t$ is a $p$-component vector, converges to $\mathbf{B}$ with probability one under certain conditions on the behavior of $x_t$ and $\mathbf{u}_t$. When $\mathbf{x}_t$ is stochastic and the conditional expectation of $\mathbf{u}_t$ given $\mathbf{x}_s$ for $s \leqslant t$ and $\mathbf{u}_t$ for $s < t$ is zero, then the least squares estimates are strongly consistent if the inverse of $\mathbf{A}_T = \sigma^T_{t=1} \mathbf{x}_t\mathbf{x}'_t$, where $T$ is the sample size, converges to the zero matrix and if the ratio of the largest to the smallest characteristic root of $\mathbf{A}_T$ is bounded with probability one.
Publié le : 1979-05-14
Classification:  Least squares,  strong consistency,  linear regression,  dynamic models,  62J05,  60F15
@article{1176344670,
     author = {Anderson, T. W. and Taylor, John B.},
     title = {Strong Consistency of Least Squares Estimates in Dynamic Models},
     journal = {Ann. Statist.},
     volume = {7},
     number = {1},
     year = {1979},
     pages = { 484-489},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176344670}
}
Anderson, T. W.; Taylor, John B. Strong Consistency of Least Squares Estimates in Dynamic Models. Ann. Statist., Tome 7 (1979) no. 1, pp.  484-489. http://gdmltest.u-ga.fr/item/1176344670/