Admissible and Minimax Estimation for the Multinomial Distribution and for K Independent Binomial Distributions
Olkin, Ingram ; Sobel, Milton
Ann. Statist., Tome 7 (1979) no. 1, p. 284-290 / Harvested from Project Euclid
Admissible and minimax estimation is discussed for estimating the parameters in the (a) multinomial distribution and in (b) $k$ independent binomial distributions. In (a) the loss function is $\sum^n_0\lbrack\delta_i(x) - \theta_i\rbrack^2/\theta_i$, where $\theta_0, \cdots, \theta_k(\sum\theta_i = 1)$ are the parameters in the multinomial distribution, and the estimators are restricted to $\sum^k_0\delta_i(x) = 1$. In (b) the loss functions considered are the weighted sum of quadratic losses. The method of proof is based on a multivariate analog of the Cramer-Rao inequality, and uses the divergence theorem in a novel way.
Publié le : 1979-03-14
Classification:  Admissible estimators,  minimax estimators,  multinomial distribution,  independent binomial distributions,  multivariate Cramer-Rao inequality,  divergence theorem,  62C15,  62H15
@article{1176344613,
     author = {Olkin, Ingram and Sobel, Milton},
     title = {Admissible and Minimax Estimation for the Multinomial Distribution and for K Independent Binomial Distributions},
     journal = {Ann. Statist.},
     volume = {7},
     number = {1},
     year = {1979},
     pages = { 284-290},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176344613}
}
Olkin, Ingram; Sobel, Milton. Admissible and Minimax Estimation for the Multinomial Distribution and for K Independent Binomial Distributions. Ann. Statist., Tome 7 (1979) no. 1, pp.  284-290. http://gdmltest.u-ga.fr/item/1176344613/