Lower Bounds for Nonparametric Density Estimation Rates
Boyd, David W. ; Steele, J. Michael
Ann. Statist., Tome 6 (1978) no. 1, p. 932-934 / Harvested from Project Euclid
If $f_n(x)$ is any estimator of the density $f(x),$ it is proved that the mean integrated square error is no better than $O(n^{-1}).$
Publié le : 1978-07-14
Classification:  Nonparametric,  density estimation,  mean integrated square error,  Cramer-Rao inequality,  62G20,  62F20
@article{1176344269,
     author = {Boyd, David W. and Steele, J. Michael},
     title = {Lower Bounds for Nonparametric Density Estimation Rates},
     journal = {Ann. Statist.},
     volume = {6},
     number = {1},
     year = {1978},
     pages = { 932-934},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176344269}
}
Boyd, David W.; Steele, J. Michael. Lower Bounds for Nonparametric Density Estimation Rates. Ann. Statist., Tome 6 (1978) no. 1, pp.  932-934. http://gdmltest.u-ga.fr/item/1176344269/