Solutions to Empirical Bayes Squared Error Loss Estimation Problems
Fox, Richard J.
Ann. Statist., Tome 6 (1978) no. 1, p. 846-853 / Harvested from Project Euclid
Asymptotically optimal empirical Bayes squared error loss estimation procedures are developed for three families of continuous distributions, uniform $(0, \theta), \theta > 0,$ uniform $\lbrack \theta, \theta + 1), \theta$ arbitrary, and a location parameter family of gamma distributions. The approach taken is to estimate the Bayes estimator directly. However, for the $\lbrack \theta, \theta + 1)$ case, it is shown that the indirect approach of applying the Bayes estimator, versus an almost sure weakly convergent estimator of the prior, also yields an asymptotically optimal procedure.
Publié le : 1978-07-14
Classification:  Empirical Bayes squared error loss estimation,  posterior mean,  asymptotically optimal empirical Bayes procedure,  Bayes optimal risk,  62C25,  62C10,  62A15,  62F10,  62F15
@article{1176344258,
     author = {Fox, Richard J.},
     title = {Solutions to Empirical Bayes Squared Error Loss Estimation Problems},
     journal = {Ann. Statist.},
     volume = {6},
     number = {1},
     year = {1978},
     pages = { 846-853},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176344258}
}
Fox, Richard J. Solutions to Empirical Bayes Squared Error Loss Estimation Problems. Ann. Statist., Tome 6 (1978) no. 1, pp.  846-853. http://gdmltest.u-ga.fr/item/1176344258/