Deriving Unbiased Risk Estimators of Multinormal Mean and Regression Coefficient Estimators Using Zonal Polynomials
Zidek, Jim
Ann. Statist., Tome 6 (1978) no. 1, p. 769-782 / Harvested from Project Euclid
Unbiased risk estimators are derived for estimators in certain classes of equivariant estimators of multinormal matrix means, $\xi,$ and regression coefficients $\beta.$ In all cases the covariance matrix is unknown. The underlying method, a multivariate version of that of James and Stein (1960), uses zonal polynomial expansions for the distributions of noncentral statistics. This gives, in one case, the required generalization of the Pitman-Robbins representation of noncentral chi-square statistics including the appropriate multivariate Poisson law. In the other case, a multivariate negative binomial law emerges. The result for regression coefficients suggests a new minimax estimator and, essentially, an extension of Baranchik's result.
Publié le : 1978-07-14
Classification:  Unbiased risk estimators,  minimax estimators,  multivariate Poisson,  multivariate negative binomial,  James-Stein estimator,  multivariate regression,  zonal polynomials,  Pitman-Robbins representation,  62C15,  62F10,  62H10
@article{1176344251,
     author = {Zidek, Jim},
     title = {Deriving Unbiased Risk Estimators of Multinormal Mean and Regression Coefficient Estimators Using Zonal Polynomials},
     journal = {Ann. Statist.},
     volume = {6},
     number = {1},
     year = {1978},
     pages = { 769-782},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176344251}
}
Zidek, Jim. Deriving Unbiased Risk Estimators of Multinormal Mean and Regression Coefficient Estimators Using Zonal Polynomials. Ann. Statist., Tome 6 (1978) no. 1, pp.  769-782. http://gdmltest.u-ga.fr/item/1176344251/