An Efficient and Robust Adaptive Estimator of Location
Beran, Rudolf
Ann. Statist., Tome 6 (1978) no. 1, p. 292-313 / Harvested from Project Euclid
A nonparametric minimum Hellinger distance estimator of location is introduced and shown to be asymptotically efficient at every symmetric density with finite Fisher information. Under small, possibly asymmetric, perturbations in such a density, the estimator is asymptotically robust in a technical sense which extends Hajek's concept of "regularity." A numerical example illustrates the computational feasibility of the estimator and its resistance to an arbitrary single outlier.
Publié le : 1978-03-14
Classification:  Minimum Hellinger distance,  adaptive location estimator,  asymptotically efficient,  robust estimator,  nonparametric estimator,  contiguity,  62G05,  62G35
@article{1176344125,
     author = {Beran, Rudolf},
     title = {An Efficient and Robust Adaptive Estimator of Location},
     journal = {Ann. Statist.},
     volume = {6},
     number = {1},
     year = {1978},
     pages = { 292-313},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176344125}
}
Beran, Rudolf. An Efficient and Robust Adaptive Estimator of Location. Ann. Statist., Tome 6 (1978) no. 1, pp.  292-313. http://gdmltest.u-ga.fr/item/1176344125/