Distributions Related to Linear Bounds for the Empirical Distribution Function
Wellner, Jon A.
Ann. Statist., Tome 5 (1977) no. 1, p. 1003-1016 / Harvested from Project Euclid
$X_1, \cdots, X_n$ are i.i.d. Uniform (0, 1) rv's with empirical df $\Gamma_n$ and order statistics $0 < U_1 < \cdots < U_n < 1.$ Define random variables $U_\ast, i_\ast$ (for $n \geqq 2$) by $\max_{1\leqq i \leqq n - 1} \frac{U_{i + 1}}{i} = \frac{U_{i_\ast} + 1}{i_\ast}, U_\ast = U_{i_\ast + 1};$ $i_\ast + 1$ is the (random) index of the order statistic at which the maximum is achieved and $U_\ast$ is the value of that order statistic. The distributions of $(U_\ast, i_\ast)$ and of $U_\ast$ and $i_\ast$ are found for all $n \geqq 2,$ extending and complementing earlier results due to Birnbaum and Pyke, Chang, and Dempster. The limiting distributions are found and related to the corresponding sums of exponential rv's by a Poisson type invariance result for the empirical df $\Gamma_n$ and its inverse $\Gamma_n^{-1}$.
Publié le : 1977-09-14
Classification:  Distributions,  linear bounds,  empirical distribution function,  Poisson process,  62E15,  62G30,  60F05
@article{1176343955,
     author = {Wellner, Jon A.},
     title = {Distributions Related to Linear Bounds for the Empirical Distribution Function},
     journal = {Ann. Statist.},
     volume = {5},
     number = {1},
     year = {1977},
     pages = { 1003-1016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343955}
}
Wellner, Jon A. Distributions Related to Linear Bounds for the Empirical Distribution Function. Ann. Statist., Tome 5 (1977) no. 1, pp.  1003-1016. http://gdmltest.u-ga.fr/item/1176343955/