General Distribution Theory of the Concomitants of Order Statistics
Yang, S. S.
Ann. Statist., Tome 5 (1977) no. 1, p. 996-1002 / Harvested from Project Euclid
Let $(X_i, Y_i) (i = 1, 2, \cdots, n)$ be $n$ independent $\mathrm{rv}$'s from some bivariate distribution. If $X_{r:n}$ denotes the $r$th ordered $X$-variate, then the $Y$-variate $Y_{\lbrack r:n\rbrack}$ paired with $X_{r:n}$ is termed the concomitant of the $r$th order statistics. The exact and asymptotic distribution theory of $Y_{\lbrack r:n\rbrack}$ and of its rank are studied. The results obtained are applied to a prediction problem in a Round Robin tournament.
Publié le : 1977-09-14
Classification:  Order statistics,  concomitants,  distribution,  Round Robin tournament,  62E15,  62G30,  62F07
@article{1176343954,
     author = {Yang, S. S.},
     title = {General Distribution Theory of the Concomitants of Order Statistics},
     journal = {Ann. Statist.},
     volume = {5},
     number = {1},
     year = {1977},
     pages = { 996-1002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343954}
}
Yang, S. S. General Distribution Theory of the Concomitants of Order Statistics. Ann. Statist., Tome 5 (1977) no. 1, pp.  996-1002. http://gdmltest.u-ga.fr/item/1176343954/