Some Variational Results and Their Applications in Multiple Inference
Jensen, D. R. ; Mayer, L. S.
Ann. Statist., Tome 5 (1977) no. 1, p. 922-931 / Harvested from Project Euclid
Let $(\mathbf{M}, \mathbf{T}, \mathbf{S})$ be random matrices such that $\mathbf{M}$ and $\mathbf{S}$ are Hermitian positive definite almost everywhere. Let $\mathbf{M}_{(t)} = \lbrack m_{ij}; 1 \leqq i, j \leqq t\rbrack, \mathbf{S}_{(t)} = \lbrack s_{ij}; 1 \leqq i, j \leqq t\rbrack$ and $\mathbf{T}_{(r,s)} = \lbrack t_{ij}; 1 \leqq i \leqq r, 1 \leqq j \leqq s\rbrack$, and define $Q(r, s) = P\lbrack G((\mathbf{M}_{(r)})^{-\frac{1}{2}}\mathbf{T}_{(r,s)}(\mathbf{S}_{(s)}) ^{-\frac{1}{2}}) \leqq c\rbrack$ for some $G$ belonging to the class $\mathscr{G}$ of monotone unitarily invariant functions. The main result is that, for any $c$ and $G \in \mathscr{G}, Q(r, s)$ is a decreasing function of $r$ and $s$. Applications yield simultaneous confidence bounds for a variety of multivariate and multiparameter problems.
Publié le : 1977-09-14
Classification:  Monotone unitarily invariant functions,  separation of singular values,  stochastic ordering,  simultaneous confidence bounds,  symmetric gauge functions,  62E10,  62H05,  62H15
@article{1176343948,
     author = {Jensen, D. R. and Mayer, L. S.},
     title = {Some Variational Results and Their Applications in Multiple Inference},
     journal = {Ann. Statist.},
     volume = {5},
     number = {1},
     year = {1977},
     pages = { 922-931},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343948}
}
Jensen, D. R.; Mayer, L. S. Some Variational Results and Their Applications in Multiple Inference. Ann. Statist., Tome 5 (1977) no. 1, pp.  922-931. http://gdmltest.u-ga.fr/item/1176343948/